Proton Magnetic Resonance Studies of Compounds with Bridgehead Nitrogen Atoms. Part XXII. ${ }^{1}$ The Stereochemistry and ${ }^{1} \mathrm{H}$ Nuclear Magnetic Resonance Spectra of Some Perhydro-2-methylimidazo[1,5-a]-pyridin-1-ones and Perhydro-2-methylpyrido[1,2-c]pyrimidin-3-ones

By T. A. Crabb * and R. F. Newton, Department of Chemistry, Portsmouth Polytechnic, Portsmouth, Hampshire

Abstract

cis-Fused and trans-fused ring conformations have been assigned to a range of perhydro-2-methylimidazo[1,5-a]-pyridin-1-ones and perhydro-2-methylpyrido[1,2-c]pyrimidin-3-ones from a study of their i.r. and n.m.r. spectra. Unexpectedly the conformational preferences of these compounds and the values of the geminal coupling constants for the methylene group protons situated between the nitrogen atoms are similar to those observed for the corresponding compounds not substituted with a carbonyl function. An unusual long range coupling between $3 a x^{\prime}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}$ of $\mathrm{ca} .2 \cdot 5 \mathrm{~Hz}$ is shown by the perhydro-2-methylimidazo[1.5-a]pyridin-1-ones. cis(2-H,3-H)3, N -Dimethyl-2-piperidyicarboxamide reacts with formaldehyde to give, instead of the expected cis $(8-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$ -perhydro-8-methylimidazo[1,5-a]pyridin-1-one, cis(10-H,10a-H)-perhydro-2,10-dimethylpyrido $[1,2-c][1,3,6]-$ oxadiazepin-1-one.

Considerable interest has recently been shown in the conformational analysis of the hexahydropyrimidine system (1) ${ }^{2-6}$ and in the related trans-perhydroquinazolines (2), ${ }^{7}$ perhydropyrido $[1,2-c]$ pyrimidines (3), ${ }^{8}$ and perhydrodipyrido $\left[1,2-c, 2^{\prime}, 1^{\prime}-f\right]$ pyrimidines (4). ${ }^{9}$ Low temperature n.m.r. studies have established ${ }^{3}$ conformation (5) for 1-methylhexahydropyrimidine ($1 ; \mathrm{R}^{1}=\mathrm{H}$, $\mathrm{R}^{2}=\mathrm{Me}$) and similar axial NH conformations have been determined for the trans-perhydroquinazolines ($2 ; \mathrm{R}^{1}=$ Me, $\mathrm{R}^{2}=\mathrm{H}$) and ($\left.2 ; \mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{Me}\right) .{ }^{7} \quad$ 1,3-Dimethylhexahydropyrimidine $\quad\left(1 ; \quad R^{1}=R^{2}=\mathrm{Me}\right),{ }^{2 a}$ 1,3,5-trimethylhexahydropyrimidine, ${ }^{4,5}$ and 1,3 -di-methyl-trans-perhydroquinazoline $\left(2 ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right)^{7}$ exist as equilibrium mixtures containing ca. 70% of the diequatorial methyl conformation [e.g. (6)] and 30% of the axial methyl-equatorial methyl conformation [e.g. (7)]. In contrast to these results 2 -methylperhydropyrido $[1,2-c]$ pyrimidine $(3 ; \mathrm{R}=\mathrm{Me})^{8}$ appears to exist exclusively in the equatorial methyl conformation (8) and the existence of syn-perhydrodipyrido $\left[1,2-c, 2^{\prime}, 1^{\prime}-f\right]-$ pyrimidine in the trans-syn-trans conformation (9) has been demonstrated. ${ }^{9}$ In all these systems the conformational preferences have been explained in terms of dipolar interactions arising from a 1,3 -arrangement of the heteroatoms (generalised anomeric effect). ${ }^{10}$
The importance of this effect in influencing the position of conformational equilibrium in systems incorporating a 1,3 -hetero-five-membered ring is illustrated by the results obtained on 2 -methylperhydroimidazo $[1,5-a]$ -
${ }^{1}$ Part XXI, R. Cahill and T. A. Crabb, J.C.S. Perkin II, 1972, 1374; Part XX, R. Cahill and T. A. Crabb, Org. Magnetic Resonance, 1972 , in the press.
${ }^{2}$ (a) R. A. Y. Jones, A. R. Katritzky, and M. Snarey, J. Chem. Soc. (B), 1970, 131; (b) P. J. Halls, R. A. Y. Jones, A. R. Katritzky, M. Snarey, and D. L. Trepanier, ibid., 1971, 1320.
${ }^{3}$ H. Booth and R. U. Lemieux, Canad. J. Chem., 1971, 49, 777.
${ }^{4}$ F. G. Riddell and D. A. R. Williams, Tetrahedron Letters, 1971, 2073.
${ }^{5}$ E. L. Eliel, L. D. Kopp, J. E. Dennis, and S. A. Evans, jun., Tetrahedron Letters, 1971, 3409.
${ }^{6}$ ' R. O. Hutchins, L. D. Kopp, and E. L. Eliel, J. Amer. Chem. Soc., 1968, 90, 7174.
${ }_{7}$ W. L. F. Armarego and T. Kobayashi, J. Chem. Soc. (C), 1971, 2502.
${ }^{8}$ T. A. Crabb and R. F. Newton, Tetrahedron, 1970, 26, 701.
${ }^{9}$ P. J. Chivers and T. A. Crabb, Tetrahedron, 1970, 26, 3369.
${ }_{10}$ S. Wolfe, A. Rauk, L. M. Tel, and I. G. Csizmadia, J. Chem. Soc. (B), 1971, 136.
pyridine $(10)^{11}$ and perhydro-oxazolo[3,4-a]pyridine (11). ${ }^{12}$ Whereas (11) exists as an equilibrium mixture of ca. 60% trans-fused (12) and 40% cis-fused conformations (13), ${ }^{12} \quad 2$-methylperhydroimidazo $[1,5-a]$ pyridine (10) exists predominantly in the trans-fused ring conformation [(14) and (15)] presumably because the destabilising influence present in (14) (evidenced by the presence of near parallel lone pairs) can be relieved without ring inversion by inversion at N-2 [conformation (15)].
Since it has been pointed out ${ }^{13}$ that a considerable portion of the negative charge of the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ dipole may reside in the area classically delineated by a nitrogen lone pair of electrons and that lone pair-lone pair interactions may be important ${ }^{14}$ as part of the generalised anomeric effect it seemed worthwhile synthesising and examining for conformational preferences some perhydroimidazo $[1,5$-a]pyridin-1-ones (16) and perhydro-pyrido[1,2-c]pyrimidin-3-ones (17) in which inter alia the non-bridgehead nitrogen atom with its lone pair of electrons present in (10) and (3) has been replaced by a nitrogen atom with its lone pair of electrons incorporated in an amide group.
Synthesis of Compounds.-The series of methyl substituted perhydro-2-methylimidazo $[1,5-a]$ pyridin-1-ones (16) were prepared starting from the appropriately methyl substituted 2 -cyanopyridines which were converted to the corresponding ethyl pyridinecarboxylate. These were catalytically reduced to the ethyl piperidinecarboxylates and since catalytic hydrogenation normally produces that isomer expected by cis-addition of hydrogen the major isomer in each case was assigned that configuration in which the 2 -ethoxycarbonyl group was cis to the methyl substituent. The correctness of these configurational assignments was confirmed by the results described below. Reaction of the substituted ethyl piperidinecarboxylate with methylamine in ethanol yielded the N-methyl-2-carboxamide which on treatment with formaldehyde gave the substituted perhydro2 -methylimidazo $[1,5-a]$ pyridin-1-one. Similar sequences

11 T. A. Crabb and R. F. Newton, Tetrahedron, 1968, 24, 6327.
12 T. A. Crabb and R. F. Newton, Tetrahedron, 1968, 24, 1997.
13 A. J. de Hoog, H. R. Buys, C. Altona, and E. Havinga, Tetrahedron, 1969, 25, 3365.
14 F. P. Chen and R. G. Jesaitis, Chem. Comm., 1970, 1533.
of reactions were employed for the synthesis of the 7-t-butyl compound (16e) and of the perhydro-2-

(1)

(2)

(3)

(4)

(8)

(10)

(12)

(9)
(13)

(11)
methylpyrido[$1,2-c]$ pyrimidin-3-ones (17). The attempted synthesis of $\operatorname{cis}(8-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-perhydro-2,8-dimethylimidazo $1,5-a]$ pyridin-1-one gave instead cis-

(16)

(17)
a; $\mathrm{R}=\mathrm{H}$
$\mathrm{b} ; \operatorname{cis}(5-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}), \mathrm{R}=5-\mathrm{Me}$ c; $\operatorname{cis}(6-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}), \mathrm{R}=6-\mathrm{Me}$ d ; $\operatorname{cis}(7-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}), \mathrm{R}=7-\mathrm{Me}$ $\mathrm{e} ; \operatorname{cis}(7-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}), \mathrm{R}=7-\mathrm{Bu}^{\mathrm{t}}$ $\mathrm{f} ; \quad \operatorname{trans}(8-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}), \mathrm{R}=8-\mathrm{Me}$
(10-H,10a-H)-2,10-dimethylperhydropyrido $[1,2-c][1,3,6]-$ oxadiazepin-1-one (18). The evidence on which this

(18)
structure is used will be provided after the discussion of the conformational analysis of systems (16) and (17).

RESULTS AND DISCUSSION

I. Perhydro-2-methylimidazo[1,5-a $]$ pyridin-1-ones (16). -Perhydro-2-methylimidazo[1,5-a]pyridin-1-one can exist as an equilibrium mixture of one trans-fused (19) and two $c i s$-fused [(20) and (21)] ring conformations inter-

(23)
(24)
convertible by inversion at the nitrogen atom (19) \rightleftharpoons (20) or by ring inversion (20) $\rightleftharpoons(21)$. In work on related systems [e.g. (11)] ${ }^{12}$ the appearance of marked absorption (Bohlmann bands ${ }^{15}$) in the $2800-2600 \mathrm{~cm}^{-1}$ region of the i.r. spectrum has proved to be a reliable indication of the presence of trans-fused ring conformations since only this conformation possesses the two $\alpha-\mathrm{C}-\mathrm{H}$ bonds trans diaxial with the nitrogen lone pair necessary for band formation. This i.r. criterion was not as generally applicable to the 2-methylperhydroimidazo $1,5-a]$ pyridines (10) ${ }^{11}$ because of Bohlmann absorption arising from the N-methyl and the $\mathrm{C}-1-\mathrm{H}$ and $\mathrm{C}-3-\mathrm{H}$ bonds. However in (16) [and (17)] incorporation of $\mathrm{N}-2$ in the amide grouping inhibits Bohlmann band formation from $\mathrm{C}-\mathrm{H}$ bonds α to the amide nitrogen atom so that any such absorption in the spectra of these compounds must arise from the bonds α to the bridgehead nitrogen atom.

[^0]With the exception of $c i s(6-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-perhydro-2,6-dimethylimidazo $1,5-a]$ pyridin-1-one (16c) all the derivatives of (16) described in this paper showed marked absorption in the $2800-2600 \mathrm{~cm}^{-1}$ region of their i.r. spectra showing their predominant existence in the trans-fused ring conformation.
cis(6-H,8a-H)-Perhydro-2,6-dimethylimidazo[1,5-a]-pyridin-1-one (16 c) in which the 6 -methyl group occupies an axial position when the ring fusion is trans, exhibited only weak absorption between 2850 and $2500 \mathrm{~cm}^{-1}$ and was accordingly assigned the equatorially methyl-substituted cis-fused ring conformation (22).

Table 1
N.m.r. parameters of C-3 methylene protons in compounds (16)

Compound (16a)	Solvent	Operating frequency (MHz)	Coupling constants (Hz)			
					$\begin{gathered} \text { Chemical } \\ \text { shifts } \\ {[\delta(\text { p.p.m. })]} \end{gathered}$	
			$J_{3 * q, 3 a x}$	$J_{3 a x .8 \mathrm{a}}$	$3 e q-\mathrm{H}$	$3 a x-\mathrm{H}$
	CCl_{4}	60	$-4 \cdot 9$	$2 \cdot 1$	$4 \cdot 06$	$3 \cdot 81$
	Benzene	60	$-4 \cdot 7$	$2 \cdot 1$	$3 \cdot 66$	$3 \cdot 38$
(16b)	CCl_{4}	60	$-4 \cdot 3$	$2 \cdot 5$	$4 \cdot 18$	$3 \cdot 66$
	Benzene	60	$-4 \cdot 4$	$2 \cdot 5$	$3 \cdot 81$	$3 \cdot 21$
(16c)	CCI_{4}	60	$-7 \cdot 1$	$1 \cdot 8$	$3 \cdot 83$	$4 \cdot 13$
	Benzene	220	$-7 \cdot 0$	1.7	$3 \cdot 33$	$3 \cdot 61$
(16d)	CCl_{4}	60	$-4 \cdot 0$	$2 \cdot 1$	$4 \cdot 10$	$3 \cdot 73$
	Benzene	60	$-4 \cdot 2$	$2 \cdot 1$	$3 \cdot 71$	$3 \cdot 30$
(16e)	CCl_{4}	60	$-4 \cdot 2$	$2 \cdot 1$	$4 \cdot 05$	$3 \cdot 70$
	Benzene	220	$-4 \cdot 1$	$2 \cdot 1$	$3 \cdot 70$	$3 \cdot 30$
(16f)	CCl_{4}	60	$-4 \cdot 1$	$2 \cdot 5$	$4 \cdot 13$	$3 \cdot 33$
	Benzene	60	$-4 \cdot 0$	$2 \cdot 5$	3-70	3-17

The n.m.r. spectra (Table 1) of the perhydroimidazo-[1,5-a]pyridin-1-ones (16) provided confirmatory evidence for these conformational assignments. Those compounds (16a, b, d, e, and f) assigned trans-fused ring conformations on the basis of their i.r. spectra possessed a geminal coupling constant ($J_{g e m}$, assumed negative) for the C-3 methylene protons of -4.0 to -4.9 Hz and (16c) (cis-fused) a $J_{g e m}$ value of $-7 \cdot 1 \mathrm{~Hz}$. Surprisingly these $J_{\text {gem }}$ values are close to those observed ${ }^{11}$ for the cis- and trans-fused perhydroimidazo [1,5-a]pyridines (10) and it would appear that in the amides the reduced transfer of the $\mathrm{N}-2$ lone pair into the antisymmetric methylene molecular orbital is almost exactly compensated for by the increased inductive withdrawal of electrons from the symmetric methylene molecular orbital. ${ }^{16}$

The slightly more negative $J_{g e m}$ (C-3 methylene) observed in the spectrum of the unsubstituted parent compound (16a) over that observed for the other transfused ring conformers suggests the existence of this compound as a conformational mixture containing appreciable amounts of the cis-fused ring conformation. If the $\operatorname{cis}(7-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})-7$-t-butyl compound (16e) is assumed to exist completely in the trans-fused ring conformation ($J_{\text {gen }}-4 \cdot 1 \mathrm{~Hz}$) and the $\operatorname{cis}(6-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-6methyl compound (16 c) completely in the cis-fused ring conformation ($J_{\text {gem }}-7 \cdot 1 \mathrm{~Hz}$) then (16 a) $\left(J_{\text {gem }}-4.9 \mathrm{~Hz}\right.$) must exist as a conformational mixture containing $c a$. 27% cis- and 63% trans-fused ring conformers at room temperature.

In the spectra of the trans-fused compounds the high
field half of the C-3 methylene AB quartet showed a further 'splitting' of $2 \cdot 1-2.5 \mathrm{~Hz}$. It was possible to assign the high field signals to $3 a x-\mathrm{H}$ since on going from (19) $[(16 \mathrm{a})]$ to (23) $[(16 \mathrm{~b})]$ the low-field $3-\mathrm{H}$ is deshielded ($0 \cdot 12$ p.p.m.) and the high-field $3-\mathrm{H}$ shielded (0.15 p.p.m.). This suggests that the low-field proton is $3 \mathrm{eq}-\mathrm{H}$ since many examples of deshielding of such a proton by a similarly situated methyl group are known. ${ }^{11}$ Thus it is $3 a x-\mathrm{H}$ which is further coupled but it was not possible to determine the location of the coupled proton at 60 MHz .

To investigate the origin of this long range coupling and to provide more detailed evidence regarding the stereochemistry of these compounds a 220 MHz spectrum of the cis $(7-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-7-t-butyl compound (16e) was obtained (Table 2). In this spectrum the angular

Table 2

Chemical shifts [δ (p.p.m.)]		Coupling constants (Hz)			
		$J_{\text {gem }}$ an		${ }^{4} J, J_{a \mathrm{a}, \text { eq }}$ and	
3 eq -H	3.70	$J_{3 e q .3 e x}$	-4.1	$J_{3 a x, 8 \mathrm{a}}$	$2 \cdot 1$
3 ax -H	$3 \cdot 30$				
5 eq - H	2.45	$J_{5 \text { ee. } 54 x}$	-11.5	$J_{\text {beq. } 6 e q}$	$3 \cdot 0$
$5 a x-\mathrm{H}$	1.99		11.5	$J_{\text {beq gax }}$	-0
$6 e q-\mathrm{H}$	1.40			$J_{5 a x .6 e q}$	$3 \cdot 3$
$6 a x$-H	1.22	$J_{\text {beq, } 6 a x}$	-12.5	$J_{6 e q, 7 a x}$	$3 \cdot 0$
$7 a x-\mathrm{H}$ $8 e q-\mathrm{H}$	0.88 2.17	$J_{6 a x, 7 a x}$ $J_{7 a x}{ }^{\text {a }}$ ax	12.0 12.0		
$8 a x-\mathrm{H}$	1.22	$J_{\text {seq, }}^{8 a x}$	-12.5		
$8 a-\mathrm{H}$	$2 \cdot 70$	$J_{8, ~ 8 a x}$	11.0	$J_{8 a, 8 e q}$	4.5

($8 \mathrm{a}-\mathrm{H}$) proton was seen to absorb as a doublet of quartets ($\delta 2.70$ p.p.m.) and analysis of the multiplet showed $3 a x-\mathrm{H}$ to be coupled (${ }^{4} J 2 \cdot 1 \mathrm{~Hz}$) to this proton. Analysis of the rest of the n.m.r. spectrum gave the coupling constants shown in Table 2, demonstrating beyond doubt the existence of $\operatorname{cis}(7-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-perhydro-2-methyl-7-t-butylimidazo[1,5-a]pyridine-1-one (16e) in the transfused ring conformation (24) with a chair piperidine ring.

Analysis of the 220 MHz spectrum (Table 3) of cis$(6 \mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-perhydro-2,6-dimethylimidazo[1,5-a]pyridine

TABLE 3
220 MHz N.m.r. spectrum ($\mathrm{C}_{6} \mathrm{D}_{6}$) of compound (16 c)

Chemical shifts [δ (p.p.m.)]		Coupling constants (Hz)			
		$J_{\text {gem }}$ and $J_{a x, a x}$		${ }^{4} J, J_{a x, e q}$ and $J_{e q . e q}$	
$3 e q-\mathrm{H}$	$3 \cdot 33$	$J_{3 \mathrm{eq} \text { 3ax }}$	$-7 \cdot 0$	$J_{3 e q, 8 a}$	1.7
$3 a x-\mathrm{H}$	$3 \cdot 61$			$J_{5 e q .7 e q}$	1.5
$5 e q-\mathrm{H}$	$2 \cdot 42$	$J_{5 e q, 5 a x}$	-10.5	$J_{5 e q, ~ 6 a x}$	$3 \cdot 8$
		$J_{5 a x .6 a x}$	8.5		
$5 a x-\mathrm{H}$	2.03	$J_{7 e q .7 a x}$	-11.5	$J_{\text {fax }} \mathrm{feq}_{\text {eq }}$	$5 \cdot 5$
$6 a x-\mathrm{H}$	1.54	$J_{6 a x}{ }^{\text {Pax }}$	$9 \cdot 5$	$J_{7 e q .8 e q}$	$5 \cdot 5$
$7 e q-\mathrm{H}$	$2 \cdot 23$	$J_{7 a x .8 u x}$	$10 \cdot 5$	$J_{7 \text { eq, }}$, ${ }_{\text {ax }}$	$4 \cdot 8$
$7 a x-\mathrm{H}$	1.75				
$8 e q-\mathrm{H}$	1-34	$J_{8 e q .8 x a}$	-9.5	$J_{7 a x, 8 e q}$	$5 \cdot 1$
$8 a x-\mathrm{H}$	1.05			$J_{8 e q, 8 a}$	$5 \cdot 0$
$8 a-\mathrm{H}$	$2 \cdot 90$			$J_{8 a, 8 a x}$	$5 \cdot 0$

1-one (16 c) provided confirmation of the cis-fused ring conformation (20). The C-3 methylene protons absorbed as an AB quartet ($\delta \mathbf{3 . 6 1}, 3.33$ p.p.m., $J_{g e m}$ -7.0 Hz) with the low-field half of the quartet split
${ }^{16}$ J. A. Pople and A. A. Bothner-By, J. Chem. Phys., 1965, 42, 1339.
again ($J 1 \cdot 6 \mathrm{~Hz}$). Since in (24) this ${ }^{4} J$ value arose from coupling with $8 \mathrm{a}-\mathrm{H}$, the signals arising from $8 \mathrm{a}-\mathrm{H}$ were examined and found to be a broadened triplet ($\delta 2.90$ p.p.m., $J 5.0$ and 5.0 Hz). The additional splitting (with $3-\mathrm{H}$) evidenced by the broadening of the signals was not resolved but values of the peak widths at half height were consonant with a ${ }^{4} J$ value of 1.6 Hz . From the result for $(24)[(16 e)]$ it would appear that the preferred pathway for ${ }^{4} J$ in the system $\mathrm{C}(\mathrm{O}) \mathrm{N}-\mathrm{CH}-\mathrm{N} \cdot \mathrm{CH}$ is a diaxial one. Assuming this to be applicable to (22), the long-range coupling may be tentatively attributed to coupling between $3 a x^{\prime}$ - and $8 \mathrm{a}-\mathrm{H}$ and $3 a x^{\prime}-\mathrm{H}$ must then absorb at lower field than $3 e q^{\prime}-\mathrm{H}$. The values of the vicinal couplings with $8 \mathrm{a}-\mathrm{H}$ were of the magnitude expected for $J_{e q, e q}$ or $J_{e q, a x}$ in a chair conformation and were consistent with the cis-fused ring conformation (22). In the alternative cis-conformation [(20) with axial Me at C-6] and trans-conformation [(19) with axial Me at $\mathrm{C}-6] 8 \mathrm{a}-\mathrm{H}$ is axial with respect to the six-membered ring and would thus absorb as a doublet of doublets (J ca. 11 and 4 Hz).
The $5 e q-H$ signals showed a ${ }^{4} J$ value of 1.5 Hz the origin of which could not be determined but might have been assigned as arising as a result of coupling of $3-\mathrm{H}$ with $5 e q-\mathrm{H}$ instead of with 8a-H. However, similar long range couplings of $5 e q-H$ in $c i s(6-H, 8 a-H)$-perhydro- 6 -methyloxazolo[3,4-a]pyridine ${ }^{12}$ and in $\operatorname{trans}(6-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$ -perhydro-6-methylindolizin-2-one ${ }^{\mathbf{1 7}}$ have been observed and attributed to $J_{\text {5eq, 7eq }}$ (planar W pathway). ${ }^{18} \quad J_{\text {5eq, } 5 a x}$ In cis-fused (22) is larger (-10.5 Hz) than in transfused (19) $(-11.5 \mathrm{~Hz})$ in line with a previously observed trend. ${ }^{19}$
II. Perhydro-2-methylpyrido [1,2-c]pyrimidin-3-ones (17). -On the basis of weak Bohlmann bands in their i.r. spectra (Experimental section) cis-fused ring conformations (25) were assigned to (17d) and (17f).

(25)

(26)

The remaining compounds showed marked Bohlmann bands and were assigned the trans-fused ring conformation (26). The n.m.r. data (Tables 4 and 5) was in agreement with these assignments, the cis-compounds showing more negative $J_{g e m}$ values ($-\mathbf{1 0 . 8}$ to $-\mathbf{1 1 . 7} \mathrm{Hz}$) for the C-1 methylene protons than the trans-compounds $(-8.5$ to $-9.0 \mathrm{~Hz})$. The parent unsubstituted compound (17a) ($J_{g e m}-9.0 \mathrm{~Hz}$) appears to exist as ca. 16% cis-fused ring conformation in equilibrium with the trans-fused ring conformation and the cis $(4 \mathrm{a}-\mathrm{H}, 7-\mathrm{H})$-per-hydro-2,7-dimethylpyrido[1,2-c]pyrimidin-3-one (17c) ($J_{\text {gem }}-10.8 \mathrm{~Hz}$) as 28% trans-fused conformation in

[^1]equilibrium with 72% cis-fused conformation (assuming $J_{\text {trans }}-8.5 \mathrm{~Hz}, J_{\text {cis }}-11.7 \mathrm{~Hz}$). As in the case of the perhydroimidazo $[1,5-a]$ pyridin-1-ones (16) these $J_{g e m}$

Table 4
N.m.r. spectra (60 MHz) of compounds (17)

Compound (17a)	Solvent	Coupling constants (MHz) $J_{1 a x .1 e q}$	Chemical shifts [δ (p.p.m.)]			
			$1 e q$	$1 a x$	N-Me	$C-\mathrm{Me}$
	CCl_{4}	-9.0	$3 \cdot 88$	3.61	$2 \cdot 81$	
	Benzene	-9.1	$3 \cdot 45$	$3 \cdot 16$	$2 \cdot 70$	
(17b)	CCl_{4}	-8.7	$4 \cdot 25$	3.45	$2 \cdot 81$	1.08
	Benzene	-8.7	$3 \cdot 90$	3.00	$2 \cdot 69$	0.90
(17c)	CCl_{4}	-8.5	$3 \cdot 83$	$3 \cdot 47$	$2 \cdot 83$	0.91
	Benzene	-8.5	$3 \cdot 48$	3.08	2.73	0.73
(17d)	CCl_{4}	-10.8	3.75	$4 \cdot 15$	$2 \cdot 81$	$0 \cdot 96$
	Benzene	-10.8	$3 \cdot 41$	$3 \cdot 76$	$2 \cdot 68$	0.83
(17e)	CCl_{4}	-8.7	$3 \cdot 81$	3.51	2.81	0.90
(17f)	$\mathrm{CCl}_{4} \mathrm{Benzene}$	-11.7	3.78		2.78	0.85
	Benzene	-11.6	3•40	$3 \cdot 97$	$2 \cdot 68$	0.61

220 MHz N.m.r. spectrum (CCl_{4}) of compound (17f)
Chemical shifts

[δ (p.p.m.)]		Coupling constants (Hz)			
$1 e q-\mathrm{H}$	3.78	$J_{\text {1ag. 1ax }}$	-11.7	$J_{\text {4ex. } 4 a}$	6.0
$1 a x-\mathrm{H}$	$4 \cdot 31$	$J_{\text {seq. } 4 a z}$	-18.2	$J_{5 a x, 4 a}$	$5 \cdot 0$
$4 e q-\mathrm{H}$	1.93	$J_{\text {4ax }}$ 4a	13.0	$J_{\text {seq. } 7 \text { eq }}$	$3 \cdot 8$
$4 a x-\mathrm{H}$	$2 \cdot 36$	$J_{\text {8ag. } 8 a x}$	-11.6	$J_{\text {8eq. } 7 \mathrm{ax}}$	3.8
$4 a-\mathrm{H}$	3.20	$J_{\text {8axi } 7 a x}$	11.6	$J_{\text {sax. }}$ 仵	4.0
$8 e q-\mathrm{H}$	$2 \cdot 50$	$J_{\text {tax, }{ }_{\text {req }}}$	-11.6	$J_{\text {7ax. }}$ beg	4.8
$8 \mathrm{ax}-\mathrm{H}$	$2 \cdot 85$	$J_{7 a x .6 a x}$	11.6		

values are close to those observed for trans-fused (-8.5 $\mathrm{Hz})$ and cis-fused (-11.3 Hz) perhydropyrido[$[1,2-c]$ pyrimidines (3). The $J_{g e m}$ values of the C-4 methylene protons $(-18.2 \mathrm{~Hz})$ indicates a conformation such that the nodal plane of the amide carbonyl bisects the 4-H-4-H internuclear axis. ${ }^{20}$

The conformational preferences of the substituted derivatives of (16) and (17) being very similar to those of the analogously substituted derivatives of (3) and (10), clearly show the very small effect on the position of conformational equilibrium resulting from replacement of the tertiary nitrogen atom in (3) and (10) by an amide function.
III. The Reaction of $\operatorname{cis}(2-\mathrm{H}, 3-\mathrm{H})-3, \mathrm{~N}-$ Dimethyl-2piperidylcarboxamide with Formaldehyde.-The piperidylcarboxamide reacted with formaldehyde to give a crystalline compound which analysed for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$.

(27)

(28)

Its n.m.r. spectrum (benzene solution) showed the presence of one N-methyl group ($\delta 2.78$ p.p.m.) and a $\mathrm{CH}-\mathrm{Me}$ group ($\delta \mathbf{1} \cdot 3$ p.p.m.). Two AB quartets centred
${ }^{19}$ R. Cahill, T. A. Crabb, and R. F. Newton, Org. Magnetic Resonance, 1971, 3, 263.
${ }^{20}$ M. Barfield and D. M. Grant, J. Amer. Chem. Soc., 1963, 85, 1899.
at $\delta 4.37\left(J_{\text {gem }}-11.2 \mathrm{~Hz}\right)$ and 4.33 p.p.m. $\left(J_{g e m}-12.4 \mathrm{~Hz}\right)$ were clearly assignable to $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{O}$ methylene group protons and the combined evidence suggested the cis $(10-\mathrm{H}, 10 \mathrm{a}-\mathrm{H})$-perhydro-2,10-dimethylpyrido $[1,2-c]$ -
[1,3,6]oxadiazepin-1-one structure (18). A similar reaction has been observed ${ }^{21}$ between $\operatorname{cis}(4 \mathrm{a}-\mathrm{H}, 8-\mathrm{H})$-trans-decahydroquinolin-8-ol and formaldehyde when the dioxazepine (27) was obtained.
cis $(6-\mathrm{H}, 9 \mathrm{a}-\mathrm{H})$-6-Methylperhydropyrido $[2,1-c][1,4]$ -
oxazin-4-one (28) has been shown ${ }^{22}$ to exist in a conformation with a deformed piperidine ring presumably as a result of unfavourable interaction between the carbonyl function and the methyl group. A similar unfavourable interaction would be present in cis- and trans-fused conformations of $\operatorname{cis}(8-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-perhydro-2,8-dimethylimidazo $[1,5-a]$ pyridin-1-one but this eclipsing relationship can be relieved in (18) by small changes in the conformation of the seven-membered ring.
trans $(2-\mathrm{H}, 3-\mathrm{H})-3, N$-Dimethylpiperidine-2-carboxamide reacted normally with formaldehyde to give the imidazo-[1,5-a]pyridin-1-one but this compound, unlike the others in the series, proved to be rather unstable and this instability must again be a result of an unfavourable carbonyl-methyl interaction.

EXPERIMENTAL

Elemental analyses were carried out by Drs. F. Pascher and E. Pascher. I.r. spectra were recorded on a PerkinElmer 457 spectrometer for $0 \cdot 2 \mathrm{M}$ solutions in carbon tetrachloride using 0.2 mm matched cells. The n.m.r. spectra were recorded on Varian T60 and H220 spectrometers for 10% solutions in carbon tetrachloride and benzene with tetramethylsilane as internal standard.

General Procedure for Preparation of Methyl-substituted N -Methylpiperidine-2-carboxamides.--A cooled solution of the methyl-substituted ethyl piperidinecarboxylate in absolute ethanol was saturated with dry methylamine gas over a period of 4 h . The solution was kept at room temperature for 24 h after which the ethanol was removed in vacuo. The crude N-methylpiperidine- 2 -carboxamide so obtained was distilled and/or recrystallised from light petroleum. $\quad \mathrm{N}$-Methylpiperidine-2-carboxamide (11.2 g) was obtained from ethyl piperidine-2-carboxylate (15 g) as white felted needles, m.p. $153-155^{\circ}$ (Found: C, $59.6 ; \mathrm{H}, 9.7$; N, 19.65. $\quad \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 59 \cdot 1 ; \mathrm{H}, 9 \cdot 9 ; \mathrm{N}, 19 \cdot 7 \%\right)$. cis $(2-\mathrm{H}, 6-\mathrm{H})-6, \mathrm{~N}$-Dimethyl-2-piperidylcarboxamide $(5 \cdot 7 \mathrm{~g})$ was obtained from the corresponding ester (10 g) as a mobile oil, b.p. $117-119^{\circ}$ at 0.1 mmHg (Found: C, 61.0 ; $\mathrm{H}, 10 \cdot 1 ; \mathrm{N}, 17 \cdot 95 . \quad \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 61 \cdot 5 ; \mathrm{H}, 10 \cdot 3$; $\mathrm{N}, \quad 17 \cdot 95 \%) . \quad \operatorname{cis}(2-\mathrm{H}, 5-\mathrm{H})-5, \mathrm{~N}$-Dimethylpiperidine-2-carboxamide $(7.8 \mathrm{~g})$ was obtained from the corresponding ester $(10 \mathrm{~g})$ as white felted needles, m.p. $106-107^{\circ}$ (Found: C, $61.8 ; \mathrm{H}, 10.15 ; \mathrm{N}, 17.9 \%$). cis(2-H,4-H)-4,N-Dimethyl piperidine-2-carboxamide $(4.4 \mathrm{~g})$ was obtained from the corresponding ester ($4 \cdot 3 \mathrm{~g}$) as white needles, m.p. 121-123 ${ }^{\circ}$ (Found: C, 61.7 ; H, $10.35 ; \mathrm{N}, 18.35 \%$). $\quad \operatorname{cis}(2-\mathrm{H}, 4-\mathrm{H})-\mathrm{N}-$ Methyl-4-t-butylpiperidine-2-carboxamide ($6 \cdot 1 \mathrm{~g}$) was obtained from the corresponding ester $(\mathbf{7} \cdot \mathbf{1} \mathrm{g})$ as white plates, m.p. 112-114 (Found: C, 66.65; H, 11.2; N, 14.45 . $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 66 \cdot 6 ; \mathrm{H}, 11 \cdot 2 ; \mathrm{N}, 14 \cdot 15 \%$).
cis-and trans-3, N-Dimethylpiperidine-2-carboxamide ($10 \cdot 1$ g) was obtained from an epimeric mixture of ethyl 3-methyl-
piperidine-2-carboxylate (16 g) as a viscous oil, b.p. 119$121^{\circ}$ at 0.9 mmHg , which solidified on standing to give white felted needles, m.p. 109-111 ${ }^{\circ}$ (from light petroleum) (Found: C, $62.85 ; \mathrm{H}, 10.35 ; \mathrm{N}, 17.35$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$: C, $61.5 ; \mathrm{H}, 10.3 ; \mathrm{N}, 17.95 \%)$.

General Procedure for the Preparation of Perhydro-2-methylimidazo[1,5-a]pyridin-1-ones.-The appropriately substituted piperidinecarboxamide and excess of 40% aqueous formaldehyde were heated together on a steam bath for 2 h . The mixture was basified with aqueous sodium hydroxide and ether-extracted three times. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and the crude product was distilled. Perhydro-2-methylimidazo[1,5-a]pyridin-1-one (1.7 g) was obtained from the amide (2.5 g) as an oil, b.p. $80-82^{\circ}$ at $0.15 \mathrm{mmHg}, n_{\mathrm{D}}{ }^{17.0} 1.5015$. This compound was unstable and accurate analysis could not be obtained, $\nu_{\text {max. }} 2785(\varepsilon 63)$, 2755 (48), 2718 (35), and $2650 \mathrm{~cm}^{-1}$ (15). $\quad \operatorname{cis}(5-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})-$ Perhydro-2,5-dimethylimidazo $[1,5$-a $]$ pyridin-1-one $(2.8 \mathrm{~g})$ was obtained from the amide ($4 \cdot 0 \mathrm{~g}$) as an oil, b.p. $92-94^{\circ}$ at $0.5 \mathrm{mmHg}, n_{\mathrm{D}}{ }^{20.0} 1.4950$ (Found: C, $64.5 ; \mathrm{H}, 9.9 ; \mathrm{N}, 16.75$. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 64 \cdot 25 ; \mathrm{H}, \mathbf{9 . 6} ; \mathrm{N}, 16 \cdot 65 \%$), $\nu_{\text {max }} 2787$ ($\varepsilon 75$), 2742 (52), 2695 (35), 2655 (20), and $2587 \mathrm{~cm}^{-1}$ (12). cis ($6-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}$)-Perhydro-2,6-dimethylimidazo $[1,5-\mathrm{a}]$ pyridin-1one $(3.0 \mathrm{~g})$ was obtained from the amide $(5.0 \mathrm{~g})$ as an oil, b.p. $95-96^{\circ}$ at 0.05 mmHg which solidified on standing to give white rhombs, m.p. $86-88^{\circ}$ (from light petroleum) (Found: C, 64.3; H, 9.85; N, 16.4\%), ${ }_{\text {max. }} 2830(\varepsilon 37)$, $2800(40), 2790(40)$, and $2750 \mathrm{~cm}^{-1}(30) . \quad$ cis $(7-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})-$ Perhydro-2,7-dimethylimidazo[1,5-a]pyridin-1-one (1-2 g) was obtained from the amide (4.0 g) as an oil, b.p. $112-114^{\circ}$ at 1.2 mmHg which solidified on standing to give white plates, m.p. $87-88^{\circ}$ (from light petroleum) (Found: C, $63.8 ; \mathrm{H}, 9 \cdot 4 ; \mathrm{N}, 16.65 \%$), $v_{\text {max }} 2790(\varepsilon 67), 2758(55), 2710$ (35), and $2642 \mathrm{~cm}^{-1}$ (12). cis $(7-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-Perhydro-2-methyl7 -t-butylimidazo $[1,5-\mathrm{a}]$ pyridin-1-one $(1 \cdot 4 \mathrm{~g})$ was obtained from the amide $(4.0 \mathrm{~g})$ as a viscous oil, b.p. 126-130 at $0.35 \mathrm{mmHg}, n_{\mathrm{D}}{ }^{20.5} 1.4924$ (Found: C, $67.95 ; \mathrm{H}, 10.65$; $\mathrm{N}, 13.0 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 68.55 ; \mathrm{H}, 10.55 ; \mathrm{N}, 13.3 \%$), $\nu_{\text {max }} 2782$ (80), $2750(52), 2718(37)$, and $2650 \mathrm{~cm}^{-1}(15)$.
Reaction of cis- and trans-3,N-Dimethylpiperidine-2-carboxamide with Formaldehyde.-A mixture of cis- and trans$3, N$-dimethylpiperidine-2-carboxamide (9.0 g) was treated with formaldehyde as described above to give an oil (3.25 g), b.p. $93-101^{\circ}$ at 0.9 mmHg , which, on standing, deposited a white solid. This was recrystallised from light petroleum as white needles, m.p. $98-99^{\circ}$, and shown to be $\operatorname{cis}(10-\mathrm{H},-$ 10a-H)-2,10-dimethylperhydro [1,2-c][1,3,6]oxadiazepin-1-one (Found: C, 60.7; H, 9.4; N, 14.1. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $60.6 ; \mathrm{H}, 9.25 ; \mathrm{N}, 14 \cdot 15 \%)$.

A solution of the remaining liquid product $(3.05 \mathrm{~g})$ in benzene was chromatographed over grade III neutral Woelm alumina (280 g) to give $\operatorname{trans}(8-\mathrm{H}, 8 \mathrm{a}-\mathrm{H})$-perhydro-2,8-dimethylimidazo $[1,5-\mathrm{a}]$ pyridin-1-one as a mobile oil, b.p. $106-108^{\circ}$ at $0.9 \mathrm{mmHg}, \nu_{\max } 2785$ ($\varepsilon 63$), 2762 (63), $2748(50)$, and $2700 \mathrm{~cm}^{-1}(30)$. This compound decomposed to a thick brown oil after several days even when stored below 0° under N_{2} and no analysis figures could be obtained.
General Procedure for the Preparation of N-Methyl-2-piperidylacetamides.-A cooled solution of the appropriate ethyl 2-piperidylacetate in absolute ethanol was saturated with dry methylamine gas over a period of 4 h . After standing at room temperature for an additional 24 h the

[^2]ethanol was removed in vacuo and the crude N-methyl-2piperidylacetamide was either distilled or recrystallised from light petroleum. N-Methyl-2-piperidylacetamide (8.7 g) was obtained from the acetate (12.0 g) as white needles, m.p. 89-91 ${ }^{\circ}$ (Found: C, $61.6 ; \mathrm{H}, 10.35$; N, 18.2. $\mathrm{C}_{8} \mathrm{H}_{16^{-}}$ $\mathrm{N}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 61 \cdot 5 ; \mathrm{H}, 10 \cdot 3 ; \mathrm{N}, 17 \cdot 95 \%\right) . \quad \operatorname{cis}(2-\mathrm{H}, 6-\mathrm{H})-$ 6,N-Dimethyl-2-piperidylacetamide ($3 \cdot 2 \mathrm{~g}$) was obtained from the acetate (12 g) as a viscous oil, b.p. $124-127^{\circ}$ at 0.15 mmHg , which solidified on standing. Recrystallisation gave felted needles, m.p. 83-84 ${ }^{\circ}$ (Found: C, 63.5; H, 10.9; $\mathrm{N}, 16.45 . \quad \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 63.5 ; \mathrm{H}, 10.65 ; \mathrm{N}$, 16.45%). cis- and trans-5,N-Dimethyl-2-piperidylacetamide $(3.9 \mathrm{~g})$ was obtained from a mixture of cis- and transacetate (8.0 g) as a viscous oil, b.p. 131-133 ${ }^{\circ}$ at 0.6 mmHg (Found: C, $64.0 ; \mathrm{H}, 11 \cdot 1$; N, 16.3%).

General Procedure for the Preparation of Substituted Per-hydro-2-methylpyrido [1,2-c]pyrimidin-3-ones.-The appropriately substituted N -methyl-2-piperidylacetamide was shaken with excess of 40% aqueous formaldehyde solution for 30 min . The mixture was heated on a steam bath for 30 min , then basified with sodium hydroxide solution, and ether-extracted three times. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and the crude product was distilled. Perhydro-2-methylpyrido[1,2-c]pyrimidin-3-one (4.1 g) was obtained from the amide (5.0 g) as a viscous oil, b.p. 101 103° at 0.15 mmHg which solidified on standing. Recrystallisation from light petroleum afforded white needles, m.p. 64-66 ${ }^{\circ}$ (Found: C, $64 \cdot 8 ;$ H, $9.6 ;$ N, 16.7. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires: C, 64.25; H, $9.6 ; \mathrm{N}, 16.65 \%$) $\nu_{\text {max. }} 2792$ ($\varepsilon 77$), 2758 (60), 2732 (60), 2670 (30), and $2620 \mathrm{~cm}^{-1}$ (10). cis-(4a-H,8-H)-Perhydro-2,8-dimethylpyrido[1,2-c]pyrimidin-3one (1.2 g) was obtained from the amide (1.4 g) as a viscous
oil, b.p. $103-104^{\circ}$ at $0.25 \mathrm{mmHg}, n_{D}{ }^{17.0} 1.5027$ (Found: C, $66.15 ; \mathrm{H}, 9.95 ; \mathrm{N}, 15.65 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 65.9$; H, 9.95 ; N, 15.35%), $\nu_{\text {max. }} 2795(\varepsilon 67), 2737(43), 2718(43)$, and $2621 \mathrm{~cm}^{-1}$ (12). cis- and trans-Perhydro-2,7-dimethylpyrido $[1,2-\mathrm{c}]$ pyrimidin- $3-o n e(3.6 \mathrm{~g})$ was obtained from a mixture of the cis- and trans-amides $(3.9 \mathrm{~g})$ as a viscous oil, b.p. $104-105^{\circ}$ at 0.06 mmHg (Found: C, 66.05 ; H, $9.95 ; \mathrm{N}, 15.55$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{ON}_{2}: \mathrm{C}, 65.9 ; \mathrm{H}, 9.95$; N, $15 \cdot 35 \%$). Separation was achieved by passing a solution of the mixture $(4.8 \mathrm{~g})$ in benzene down a grade III neutral Woelm alumina column (350 g). \quad cis $(4 \mathrm{a}-\mathrm{H}, 7-\mathrm{H})$-Perhydro2,7 -dimethylpyrido[$1,2-c$]pyrimidin-3-one (1.5 g) was the first isomer off the column and was obtained as a viscous oil, b.p. $120-122^{\circ}$ at $0.25 \mathrm{mmHg}, \nu_{\max } 2818$ ($\varepsilon 40$), 2768 (25), and $2730 \mathrm{~cm}^{-1}(20)$. trans $(4 a-\mathrm{H}, 7-\mathrm{H})$-Perhydro-2, 7 -di-methylpyrido[1,2-c]pyrimidin-3-one ($1 \cdot 3 \mathrm{~g}$) the second fraction off the column, was obtained as a viscous oil, b.p. $112-114^{\circ}$ at 0.23 mmHg , which solidified on standing to give white needles, m.p. 69-71 ${ }^{\circ}$ (from light petroleum), $\nu_{\text {max. }} 2790(\varepsilon 58), 2755(47), 2735(50)$, and $2667 \mathrm{~cm}^{-1}(15)$. trans(4a-H,5-H)-Perhydro-2,5-dimethylpyrido $[1,2-\mathrm{c}]$ pyrim-idin-3-one (0.65 g) was obtained from the amide as a viscous oil, b.p. $122-124^{\circ}$ at $0.1 \mathrm{mmHg}, \nu_{\text {max. }} 2790$ ($\varepsilon 57$), 2753 (55), 2660 (20), and $2600 \mathrm{~cm}^{-1}$ (10). cis $(4 \mathrm{a}-\mathrm{H}, 5-\mathrm{H})$ -Perhydro-2,5-dimethylpyrido $[1,2$-c $]$ pyrimidin-3-one (1-45 g) was obtained from the amide (1.75 g) as a viscous oil, b.p. $121-124^{\circ}$ at $0.35 \mathrm{mmHg}, n_{\mathrm{D}}^{17.0} 1.4937$, which solidified on standing to give white rhombs, m.p. $54-55^{\circ}$ (from light petroleum) (Found: C, 66.05; H, 9.8; N, 15.65. $\mathrm{C}_{10} \mathrm{H}_{18}$ $\mathrm{N}_{2} \mathrm{O}$ requires C, $65.9 ; \mathrm{H}, 9.95 ; \mathrm{N}, 15.35 \%$), $\nu_{\text {max. }} 2830$ ($\varepsilon 45$), 2790 (25), and $2720 \mathrm{~cm}^{-1}$ (15).
[2/865 Received, 19th April, 1972]

[^0]: 15 F. Bohlmann, Chem. Ber., 1958, 91, 2157.

[^1]: ${ }^{17}$ R. Cahill and T. A. Crabb, Org. Magnetic Resonance, 1972, 4, 259.
 ${ }^{18}$ M. Barfield and B. Chakrabarti, Chem. Rev., 1969, 69, 757. $3 \times$

[^2]: ${ }^{21}$ T. A. Crabb and R. F. Newton, Chem. Comm., 1970, 1123. ${ }_{22}$ R. Cahill and T. A. Crabb, Org. Magnetic Resonance, 1972, 4, 283.

